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Introduction

Variational approximationmethods for partial di�erential equations are based
on weak formulations and on suitable spaces of approximation.

Wavelets are known to be unconditional bases for a large variety of spaces
and therefore are good candidates for the generation of approximation spaces
for partial di�erential equation problems. The goal of this paper is to show that
moreover, wavelet bases may lead to fast and adaptive numerical resolution of
the corresponding approximations.

In this paper, as in previous papers (J. Liandrat and P. Tchamitchian [10],
[11]), the wavelets are used to expand the approximated solution of a partial
di�erential equation as well as to approximate the kernel of the di�erential
operator. They are not used only to perform \the linear algebra" (G. Beylkin
[2]) related to more classical methods of resolution.

Starting with an expansion of the form f =
P

� < f;	� > 	�, the solution
of the equation Lu = f where L is a constant coe�cient elliptic di�erential
operator is u(x) =

R
f(y)K(x; y)dy where K(x; y) =

P
� L

�1	�
�(x)	(y).

Under suitable conditions that will be made precise later, the functions
L�1	�

� as well as L	� are pseudo wavelets, very close to wavelets (Y. Meyer
[13]). This turns out to provide a stable approximation of u. However, the e�-
ciency of the corresponding numerical approximation of u relies, at least in this
work, on the hierarchic structure of multiresolution analysis since it provides
fast tree algorithms. We will show that, if the operator satis�es suitable condi-
tions that will be made explicit later, then the above mentioned pseudo wavelets
are directly related to biorthogonal multiresolution and wavelets. Under these
conditions, competitive numerical algorithms involvingO(N ) or O(N logN ) op-
erations can then be derived.

This paper provides the analysis of the problem and exhibits the correspond-
ing numerical schemes. It is then organized as follows.

The �rst part is devoted to the general concept of biorthogonal multiresolu-
tion analysis on L2(IRn). In the second part we focus on the problem of the sta-
bility of the multiresolution framework under the action of constant coe�cient
elliptic operators. The cases of homogeneous and non homogeneous operators
are treated separately. The third part deals with the numerical algorithms while
the last section is devoted to numerical tests related to the resolution of elliptic
and parabolic equations in bidimensional spaces.

I Generalities: Biorthogonal Multi-Resolution

Analysis in L
2(IRn)

The concept of multiresolution is at the basis of our construction and we there-
fore start with a short description of it :
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De�nition I.1 (Y. Meyer, [12])

A r-regular multiresolution analysis of L2(IRn) is a sequence of increasing
closed subspaces Vj ; j 2 ZZ, Vj � Vj+1, satisfying the following conditions

i)
T+1
�1 Vj = f0g; S+1

�1 Vj is dense in L
2(IRn);

ii) f(x) 2 Vj () f(2x) 2 Vj+1;

iii) f(x) 2 V0 () f(x � k) 2 V0; 8k 2 ZZn;

iv) there exists a function � in V0, such that the set of functions f�(x�k); k 2
ZZng, is a Riesz basis y for V0;

v) the function � is regular and localized : � is Cr�1; �(r�1) is almost
everywhere di�erentiable, and for almost every x 2 IRn, for every integer
� � r and for all integer p, it exists Cp such that

j@��(x)j � Cp(1 + jxj)�p : (1)

A consequence of ii), iii) and iv) is that each Vj is generated by the family
of functions f�jk(x) = 2jn=2�(2jx� k); k 2 ZZng.

For simplicity reasons, we will only consider the case n = 2, but all the
results presented to this article can be generalized in any dimension. We will
always use for vectors a contracted notation: if e is a bidimensional vector then
e = (e1; e2).

I.1 Orthogonal multiresolution analysis

To build an orthonormal multiresolution analysis, the Riesz basis f�(:� k); k 2
ZZ2g is �rst orthonormalized in such a way that the resulting orthonormal basis
is still of the form f�(:� k); k 2 Z2g.

The wavelets are introduced via the orthogonal complement of V0 in V1: W0.
More precisely, if E is the set of all vertices in the unit cube [0; 1]2, and if

E� = E n f0g, we have the following theorem:

Theorem I.1 There are 3 functions 	", " 2 E�, inW0, such that the collection
f	"(x�k); k 2 ZZ2; " 2 E�g is an orthonormal basis of W0. Moreover, each 	"

satis�es the same property (1) of regularity and localization as � and, moreover,
satis�es the following cancelation property

9 m 2 IN ; such that 8 k = (k1; k2) 2 ZZ2; 0 � ki � m;Z
IR2

xk	"(x)dx = 0 :
(2)

yA collection of vectors fe�; � 2 �g, in a Hilbert space H is a Riesz basis if any vector

x 2 H can be written in a unique way as x =
P

a� e� where (
P

ja�j
2)1=2 is �nite and

de�nes a norm equivalent to jjxjjH.
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The scaling invariance property ii) implies that, for all j, the familyf	"
jk; k 2

ZZ2; " 2 E�g is an orthonormal basis of Wj . We will also use the following
contracted notation: f	�; � 2 �jg where �j = f� = 2�j

�
k + "

2

�
; k 2 ZZ2; " 2

E�g. Indeed, there is a straightforward bijection between �j and the set of pairs
f("; k); k 2 ZZ2; " 2 E�g. We will also use the following sets: � = [j2ZZ�j and
�nm = [mj=n�j .

From the inclusion V0 � V1 the following scaling relation can be derived:

�(x) =
X
l2ZZ2

hl�(2x� l) ;

while from W0 � V1 one obtains the following detail relation:

	"(x) =
X
l2ZZ2

g"l�(2x� l); 8" 2 E� :

It is very useful to transform these relations using the Fourier transform
which is given by the equality

f̂ (�) =

Z
IR

f(x)e�i�xdx:

Indeed, the scaling relations then become

b�(�) =M0(�=2)b�(�=2) (3)

and b	"(�) =M"(�=2)b�(�=2) (4)

where M0(�) =
P

l2ZZ2 hle
�i(�:l) and M"(�) =

P
l2ZZ2 g"l e

�i(�:l) are C1 2� peri-
odic functions.

This leads to :

b�(�) = 1Y
j=1

M0(
�

2j
) ; and b	"(�) =M"(

�

2
)

1Y
j=1

M0(
�

2j+1
): (5)

The following conditions are satis�edX
e2E

M"(� + �e)M"0 (� + �e) = �""0 ; 8 ("; "0) 2 E2 (6)

and
M"(�e) = �"1;e1�"2;e2 ; 8("; e) 2 E2 (7)

and are called, following electrical engineering terms, the quadrature mirror �lter
conditions. We will also call the functions M" quadrature mirror �lters.
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Conversely, it is shown in A. Cohen et al. [4] that four 2� periodic functions
M"(�); " 2 E satisfying the quadrature mirror �lter conditions (6) generate
through (5) an orthogonal multiresolution analysis if some speci�c conditions
are satis�ed.

Remark:

� In this paper, we will often use speci�c multi-resolution analyses of L2(IR2)
based on a tensorial product of multiresolution analyses of L2(IR). More
precisely, such analyses are de�ned as follows: if (Vj) is the sequence of
spaces of a 1D multiresolution analysis and ifWj; ';  ;m0 and m1 are re-
spectively the related wavelet spaces, the scaling function, the associated
wavelet and the quadrature mirror �lters, then, the sequence of spaces
(Vj), de�ned as Vj = Vj 
 Vj is a multiresolution analysis in IR2. More-
over, �(x) = '(x1)'(x2) is the corresponding scaling function; (Wj), with
Wj =

P
"2E� W "

j are the wavelet spaces; the three generating wavelets are
	0;1(x) = '(x1) (x2), 	1;1(x) =  (x1) (x2) and 	1;0(x) =  (x1)'(x2);
M"(�) = m"1(�1)m"2 (�2) with " 2 E are the quadrature mirror �lters.

I.2 Biorthogonal Approach

A relaxation of some properties of orthogonal multiresolution analysis can be
performed using the one biorthogonal approach. This approach provides some
exibility since it allows to distribute the relevant properties of the multires-
olution (number of zero moments, compact support or regularity) to the two
involved multiresolution analyses. Moreover, it will turn out to be that the
biorthogonal framework is \stable" under the action of a large class of opera-
tors while the orthogonal framework is \fragile".

De�nition I.2 We call biorthogonal multiresolution analysis of L2(IR2), two

multiresolution analysis (Uj)j2ZZ and (eUj)j2ZZ such that there exists two families
of corresponding scaling functions � and e� such that: h�jk; e�j0k0i = �jj0�kk0 for
all j; j0 2 ZZ and, k and k0 2 ZZ2.

In this case we de�ne the wavelets spaces Xj and eXj as Uj+1 = Uj � Xj ,eUj+1 = eUj � eXj with Uj? eXj , eUj?Xj , and we introduce the functions �� =

2j�"(2j :� k) and e�� = 2je�"(2j :� k), " 2 E, that generate respectively Xj andeXj and such that h��; e��0 i = �""0�jj0�kk0.
Moreover, following the construction of orthogonal multiresolution analysis

we de�ne 2 � 4 �lters (i.e, C1 2� periodic functions), P" and eP", " 2 E,
associated with the two biorthogonal multiresolution analyses. These �lters
satisfy the biorthogonal quadrature mirror �lter relations equivalent to (6) that
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are

8 " ; "0 and e0 2 E; � 2 [0; 2�]2 ;X
e2E

eP"(� + �e)P"0(� + �e) = �""0 ;

P"(�e
0) = �"1;e1�"2;e2 ;

eP"(�e0) = �"1;e1�"2;e2 :

(8)

As in the orthonormal case, the generalizations of relations (3) and (4) relate
the scaling functions and the wavelets to the �lters as

b� (�) = P0(�=2)b� (�=2) =

1Y
j=1

P0(2
�j�); b�"(�) = P"(�=2)b� (�=2); (9)

be� (�) = eP0(�=2)be� (�=2) =

1Y
j=1

eP0(2
�j�);

be�"(�) = eP"(�=2)be� (�=2): (10)

As in section I.1, the question to know is under which conditions the biorthog-
onal �lters P" and eP" satisfying the quadrature mirror �lter conditions (8) de-
�ne two biorthogonal multiresolution analyses? Again, a speci�c condition is
required and has been formulated in A. Cohen et al. [4]. We will use a weaker
version of this formulation adapted to the case of functions with fast decay. It
can be expressed in term of the following theorem for which a complete proof
can be found in Pj. Ponenti [16] and W. Dahmen and A. Michelli [5].

Theorem I.2 Let � > 0 and let P"(�) and eP"(�), " 2 E, be eight C� 2� periodic
functions satisfying the biorthogonal quadrature mirror �lters conditions (8).

De�ning �; e� ; �; and e� using formula (9) and (10), if

- there exist C and � > 0 such that for all � 2 IR2

jb� (�)j � C(1 + j�j)�1��; jbe�(�)j � C(1 + j�j)�1�� ; (11)

- 8 k ; et k0 2 ZZ2 ,

h� (x� k); e� (x� k0)i = �kk0 ; (12)

- and if Z
IR2

jb�(�)j2
j�j2 d� <1;

Z
IR2

jbe�(�)j2
j�j2 d� <1 ; (13)

then

� the sequences of subspaces (Uj)j2ZZ, and (eUj)j2ZZ generated respectively
by f�jk; k 2 ZZ2g and fe�jk; k 2 ZZ2g are two biorthogonal multiresolution
analyses;

� the wavelet families f ��(x) = 2j	"(2jx � k); � 2 � g and fe��(x) =

2je�"(2jx� k); � 2 �g are two biorthogonal Riesz bases of L2(IR2).
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II Constant Coe�cient EllipticDi�erential Op-

erators and Biorthogonal Multiresolution Anal-

ysis

II.1 General results

The starting point of this section is the following remark. Given (	�) a family
of orthonormal wavelets and knowing f =

Phf;	�i	�, the solution of the
equation

Lu = f ; (14)

where L is an elliptic operator of order s is, at least formally,

u =
X

hf;	�iL�1 [	�] : (15)

When L and L�1 are bounded on L2(IR2), the families fL�1	�g and fL�	�g
are two biorthogonal Riesz bases.

The question we address now is related to what happens in the speci�c case
of wavelets when the operator L is unbounded (as in the case of a di�erential
operator).

In the following paragraphs, we �rst see that, assuming some compatibil-
ity conditions between 	" and L, the two families of functions fL�1	�g and
fL�	�g are wavelets or pseudo wavelets (Y. Meyer [13]) depending on whether
the operator is homogeneous or not. Then, we show that in some cases, a
biorthogonal framework embedding fL�1	�g and fL�	�g can be built.

To be more precise, we take (Vj) an r-regular multiresolution of L2(IR2) con-
structed using a tensorial product of two 1D multiresolutions and L a constant
coe�cient elliptic di�erential operator. Let us write L =

P
0���s a�D

� where

D is the operator 1
i
@
@x
. We de�ne in a standard way the symbol of L as

�(�) =
X

a��
�: (16)

It is a polynomial in � of degree s and, if f 2 C1(IR2), we have the well known
formula

8� 2 IR2 ; L̂f (�) = f̂(�)�(�): (17)

We note formally
�" = L�	" and e�" = L�1	" (18)

and more generally,

�"� = 2�jsL�	"
� and e�"� = 2jsL�1	"

�: (19)

Note that when L is homogeneous, �"�(x) = 2j�"(2jx � k) and e�"�(x) =

2je�"(2jx� k) while, in general this is not true.
Then we have
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Theorem II.1 Given a family of r regular wavelets with m+ 1 zero moments,
if L is a homogeneous operator or if L is an inhomogeneous operator with a
strictly positive symbol of order s > 0, and such that r � s and m � s, then

Regularity: �" 2 Hr�s and e�" 2 Hr+s

Localization: for all multi-indicesz 0 and  such that j0j � r � s and
jj � r + s � 1 and all integers l 2 IN ,(

j@0�"�(x)j � C0 2
jj0j2j

�
1 + 2jjx� �j��l

j@e�"�(x)j � C 2jjj2j
�
1 + 2jjx� �j��3+s�m�jj

:

Cancelation: Let xk = (xk11 ; x
k2
2 ),8><

>:
Z
IR2

xk�"(x)dx = 0; 0 � jkj � m+ aZ
IR2

xke�"(x)dx = 0; 0 � jkj � m� a ;

where a = s in the homogeneous case and a = 0 in the inhomogeneous one.

A complete proof of this theorem can be found in Y. Meyer [13] and Ph.
Tchamitchian [17].

Remark:

� Following Y. Meyer [13] and according to Theorem II.1, a factorization
of the operators L� and L�1 can be performed as L� = C � ��s and
L�1 = eC � �s where � is a diagonal operator in the wavelet basis de�ned
as:  � 7! 2j � and where C and eC are bounded on L2 and de�ned by

C :  � 7! �� ; eC :  � 7! e�� : (20)

The operators C and eC act just as a transformation between two bases.
The operator � is nothing else but the classical preconditioning operator
for elliptic problems (S. Ja�ard [8]) that mimics a diagonal derivation in
the wavelet basis.

In other words, thanks to this factorization, the computation of the image
of a function by an elliptic operator or its inverse can be transformed into
a well conditioned problem using a diagonal operator in a suitable wavelet
basis. This is essential since it provides the numerical stability of the
further developed algorithm.

We can then rewrite (15) as

u =
X

2�jshf; 	�ie�� : (21)

zWe call a multi-index any couple of integer 0 = (1; 2)and @
0

� = @
1

@x
1
1

@
2

@x
2
2
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An important issue, as far as numerical applications are concerned, is the
computation of the sum (21). Indeed, even if this sum corresponds to a pseudo
wavelet decomposition, fast algorithms for the computation of the sum are not
available. In the framework of this paper, the fast algorithms are linked to
the concept of multiresolution analysis presented in section I. We prove in
the following sections that, under suitable conditions, the construction of a
multiresolution analysis embedding the function e�� is possible. Moreover, we
provide explicit expressions of the quadrature mirror �lters required for the fast
implementation of (21).

The starting point of our construction is due to P.G. Lemari�e [9] who con-
structed in the one dimensional case two biorthogonal multiresolution analyses
from an original orthogonal one and from the derivata operator. We generalize
this approach to any dimensions and for any homogeneous elliptic operator.

In contrast to the classical constructions of multiresolution analysis, this is
an inverse problem. Indeed, knowing the two dual wavelet bases we can de�ne
two sequences of subspaces (Xj) and ( eXj):

Xj = spanf��; � 2 �l; l < jgeXj = spanfe��; � 2 �l; l < jg ; (22)

The open question is the following: how can we construct two sequences of sub-
spaces (Uj) and (eUj) for which (Xj) and ( eXj) play the role of two biorthogonal
wavelet spaces?

In other words, the problem is the construction of the generalized scaling
functions � and e� related to � and e�.

In the case of non homogeneous elliptic operators the approach used in the
homogeneous case can not be transposed and we will not be able to de�ne a
multiresolution framework embedding the space sequences (Uj) and (eUj). How-
ever, we will show that the essential property of embedding spaces as well as
the existence of scaling (3) and detail (4) relations can be saved. This will allow
us to derive fast and stable algorithms to sum up (21) even in the case of non
homogeneous operators.

II.2 The case of homogeneous elliptic operator

In that case the natural candidates for � : L�1��, are not de�ned in L2 for the
basic reason that � does not belong to the range of L, or, in other words, su�ers
from a lack of zero moments. Using a preconditioning operator, we will adapt
the function � to the operator L�1 (i.e. we will transform � so that it enters
the range of L) while preserving the two scale relations (3) and (4). We will
then check that the resulting multiresolution analysis is �tted to the functions
�� and e�� previously de�ned.

More precisely, we have the following theorem:
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Theorem II.2 Let (Vj) be the family of embedded spaces of an r-regular mul-
tiresolution analysis of L2(IR2), let L be a homogeneous operator of order s and
of symbol � and let S be a 2� periodic function, not vanishing on ]0; 2�[2 and
equivalent to � in zero. If m > s+1, r > s+ 1, and if the eight functions P"(�)

and eP"(�), " 2 E de�ned as

P0(�) = 2s
S(�)

S(2�)
M0(�); eP0(�) =

1

2s
S(2�)

S(�)
M0(�) ; (23)

P"(�) = 2sS(�) M"(�); eP"(�) =
1

2s
M"(�)

S(�)
(24)

are C�, � > 0 then they satisfy the quadrature mirror �lter conditions (8) and
de�ne two biorthogonal multiresolution analyses. The corresponding wavelets
are the functions � and e� and the scaling functions � and e� are derived following
(9) and (10).

Proof:
2 By construction all the �lters are C� with some � > 0 and they satisfy

the biorthogonal quadrature mirror �lter conditions (8).
The only point to prove is the convergence in L2(IR2) of the in�nite prod-

ucts (9) and (10) de�ning the two scaling functions. We will use the following
lemma:

Lemma II.1 Let p(x), x 2 IR2, be a homogeneous polynomial of degree s,
and let S and C, be 2� periodic functions; then the following propositions are
equivalent:

i)
1Y
j=1

C(2�jx) =
S(x)

p(x)
; (25)

ii)
S(x) = 2sC(x=2)S(x=2) ; (26)

S(x) �
x!0

p(x) : (27)

Proof:
2 The equation (26) is obtained from (25) written for x and x=2, while (27)

is derived from (25) when x! 0 since necessarily C(0) = 1.
Conversely, (25) is obtained from (26) . Indeed, since

S(x)

p(x)
= C(x=2)

S(x=2)

p(x=2)
=

S(2�Nx)

p(2�Nx)

NY
j=1

C(2�jx) ;

9



thanks to (27) we obtain (25) when N !1.

This lemma allows us to calculate the in�nite product (9) and (10), and to
get:

b� (�) =

1Y
j=1

P0(2
�j�) =

1Y
j=1

1

C(2�j�)

1Y
j=1

m0(2
�j�1)m0(2

�j�2)

be�(�) =

1Y
j=1

eP0(2
�j�) =

1Y
j=1

C(2�j�)

1Y
j=1

m0(2
�j�1)m0(2

�j�2) ;

and �nally, be� (�) =
S(�)

�(�)
b�(�) ; b� (�) =

�(�)

S(�)
b�(�) : (28)

The function � being r-regular the conditions (11) are trivially satis�ed.

De�ning the function � et e� by (9) and (10) we get

b�"(�) = P"(�=2)b� (�=2) = �(�)e	(�)
be�"(�) = eP"(�=2)be� (�=2) =

e	(�)
�(�)

:

(29)

The wavelet admissible condition (13) is immediately satis�ed thanks to Theo-
rem II.1. Finally the assumption (12) is satis�ed by construction, that completes
the proof.

Remarks:

� Note that here, thanks to homogeneity, the subscript � recovers its classical
\wavelet" meaning since in that case, ��(x) = 2j=2�(2jx�k) and e��(x) =

2j=2e�((2jx� k).

� The relation (25) is a generalization in any dimension, of the classical
formula

1Y
j=1

cos(2�jx) =
sin(x)

x

used by P.G. Lemarie for the �rst order di�erential operator in one di-
mension.

� The function S can be interpreted as the symbol of a di�erence operator
that we will call DL. If S is a trigonometric polynomial, then DL is a
�nite-di�erence operator and S is C1. The fact that S(x) �

x!0
�(x) is

just the translation that DL is consistent with L. Moreover, S removes
exactly the singularity of e� for � = 0. Conversely for � , the singularity
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given by S at points (2�n; 2�n), n 2 ZZ, will be removed exactly by � in

zero and by the zeros of b� at points (2�n; 2�n), n 2 ZZ�. Notice that this
last point won't be true for inhomogeneous operators.

From a certain point of view, DL can be seen as a preconditioner for L
since � and e� are de�ned by

� = L�1DL� and ~� = (D�
L)

�1L��: (30)

� In one dimension there is a canonical choice for S and therefore for DL

such that, if the function � and 	 have a compact support, then � , e� ,
�, and e� are also compactly supported. Indeed, in that case we have
necessarily �(�) = a�s; a 2 IC. Therefore, the canonical choice for S
is S(�) = a(�i)s �1� e�i��s and DL is then a non-centered �nite-
di�erence approximation of L of order 1. Indeed, it is well known (see
I. Daubechies [6]) that the quadrature mirror �lters related to orthogonal
compactly supported functions � and 	 are: m0(�) =

�
1 + ei�

�m L(�)
and m1(�) = ei�

�
1� e�i�

�m L(� + �) where L is a �nite trigonometric
polynomial. Then we get

P0(�) = 2s
�
1 + ei�

�m�s L(�);
P1(�) = 2saisei�

�
1� e�i��m �

1� ei��sL(� + �);eP0(�) = 2�s
�
1 + ei�

�m �
1 + e�i�

�sL(�);eP1(�) = 2�sa�1isei�
�
1� e�i�

�m�sL(� + �) ;

which proves that P0, P1, eP0 and eP1 are also �nite trigonometric polyno-
mials. Then, using the following lemma borrowed from G. Deslauriers and
S. Dubuc [7] we deduce that the functions e� , � , e�, and � have compact
support.

Lemma II.2

If �(�) =
PN2

n=N1
ne

�in� with
PN2

n=N1
n = 1, then

Q1
j=1 �(2

�j�) is an
entire function of exponential type. In particular, it is the Fourier trans-
form of a distribution with support in [N1; N2].

Clearly, this canonical form is no longer available if the space dimension
is larger than 1 since the multidimensional quadrature mirror �lters can
not be factorized as above.

II.3 The case of inhomogeneous elliptic operator

Here the non homogeneous property of the operator is obviously not adapted
to the scale invariance property of the multiresolution analysis. We will see
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however, that introducing at each level a new scaling function, an embedded
family of spaces can be constructed which preserves the mathematical properties
relevant for numerical applications.

The natural candidates for �� are a the functions L�1��. They are well
de�ned in L2(IR2) but su�er now from a lack of localization when j increases.
Indeed, we have

lim
j�!+1

k2�j�!x0

k 2�jn=2L�1 ['jk] (x)� G(x� 2�jk) k = 0

where G is the Greens function of the operator L de�ned as Ĝ(�) = 1=�(�). For
example, when L = 1��, Ĝ(�) = 1=(1+�2) and G(x) = e�jxj. G decreases fast
but mathematical and numerical di�culties come from the fact that the family
of functions fG(x� k2�j); k 2 ZZ2g is not a set of functions rescaled with j (in
other words, this family is not obtained by rescaling and translation of a single
initial function). This implies that the control of the localization by the index
j is lost. It follows that the family fL�1��; k 2 ZZ2g is not a good basis to
reconstruct our solution.

Let us show now that, however, a process very close to the one used in
the homogeneous case will provide an e�cient algorithm for the summation of
formula (21).

We mimic the construction performed in the homogeneous case. Let (Vj)
be an r-regular multiresolution analysis, let L be an elliptic operator of order s
with constant coe�cients and � its symbol (we now suppose �(�) � �0 > 0 8�).
Let us also de�ne the homogeneous polynomial of order s, _�, as the principal
part of �, and let S(�) be a C1 2� periodic function with S(�) �

� !0
�n, where

n will be �xed later.
Then, 8j 2 ZZ, we de�ne a di�erence operator Dj by its symbol S(�=2j).
Following the previous section, we de�ne 8j; k 2 ZZ

e�jk = 2jsL�1Dj�jk (31)

and

e�jk = 2jsL�1 (	jk) : (32)

By construction, and thanks to the fact that L is a constant coe�cient
operator we have e�jk(x) = e�j(x� k

2j ) and
e�jk(x) = e�j(x� k

2j ) where

be� j(�) = 2j(s�1)S(�=2j)
b�(�=2j)
�(�)

; (33)

and be�"j (�) = 2j(s�1)
b	(�=2j)
�(�)

: (34)
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Remark

� The functions ~�j mimic the function ~� de�ned in (28). Unfortunately, it is
not possible to de�ne the equivalent of � (28) since D�1

j L�jk 62 L2. Note

however that, by chance, (15) involves directly the ~�� functions.

Then, with eP0 and eP" de�ned in (23) and 24 we get the following scaling
and detail relations:

be�j(�) = 2 eP0(�=2
j+1)be� j+1(�)be�"j (�) = 2 eP"(�=2j+1)

be�"j+1(�) ; 8" 2 E�:
(35)

Remark:

� An important point is that the �lters P" are independent of the scale
index j as it is originally the case for standard multiresolution analysis.
Furthermore , since they are de�ned by (23) and 24, the �lters P" are
directly related to the homogeneous operator _L of symbol _� if n = s.
This point is essential since it means that if D0 is consistent to L, then
the tree algorithms related to the multiresolution spaces (eUj) and used to
sum up (21) are stable even if the functions e�j(x) are not standard scaling
functions. Indeed, S(�)=�(�) !�!0 0 and therefore be� j(0) = 0.

In other words, even if the functions e�jk(x) are used as scaling functions on
the range of L, they have zero moments as wavelets have.

Finally, we can prove the following theorem:

Theorem II.3 For 0 < n � s, s � r and s � m, the functions e�jk de�ned
by (33) and (31) satisfy

j@e�jk(x)j � C0
 2j(jj�s)2j

�
1 + 2jjx� 2�jkj��n+s�m�3�jj

: (36)

If n = s and if eP"(�), " 2 E are C�, then stable tree algorithms are available

in
Lj�1

`=0X`, ie,

90 < C � C0 < +1 such that if f =
P

�2�j�1

0
d�e��, then

C
X
�

jd�j2 � k f k2 � C0
X
�

jd�j2 : (37)

Proof:

� Since S 2 C1 the we can apply Theorem II.1 that proves the localization
inequality (36).
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� The relations (35) de�nes directly the tree algorithms required to compute
the coe�cients fcjkg such thatX

�2�j�1

0

d�e�� =
X
k

cjke�jk
and since, when n = s, the involved quadrature mirror �lters could be
related to the homogeneous operator _L, the stability of the algorithm is
equivalent to the stability of the transform fcjkg 7! f for f 2Lj�1

`=0X`.

� This transform is stable if and only if the family fe�jk; k 2 ZZ2g is a Riesz
basis of

Lj�1
`=0

eX`.

We have

k f k2 =

Z �����
X
k2ZZ2

cjk e�jk
�����
2

dx

=

Z
[0; 2�]

�����
X
k2ZZ2

cjk e
�i2�j (k:�)

�����
2 ��S(�=2j)��2�

P
l

����b�(2�j�+2l�)
�(�+2l�)

����
2

d� :

Since f�jkg is a Riesz basis, since S(�) is bounded, and since � is bounded
from below, then k f k2� C0

P jcjkj2, which is the second part of the
inequality (37).

To prove the �rst part of (37) we use again the fact that the �lters eP0 andeP" are related to _L.

Indeed, if we de�ne
e_�� replacing � by _� in (29) and if we de�ne _f as

_f =
P

� d�
e_�� then the transform _f 7! fd�g is stable. Moreover thanks to

theorem II.1, the operator f 7! _f which can be also de�ned as 	� 7! e_��
is also bounded (Y. Meyer [13]). Therefore the operator f 7! fd�g is
bounded that is the �rst part of (37) and that completes the proof.

III Approximation and Numerical Resolution

of Elliptic Problem on the Torus

This section is devoted to the approximation of elliptic problems on a sequence
of embedded Galerkin spaces associated with a multiresolution analysis and to
the corresponding numerical algorithms.
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Classically, we will consider the problem with periodic boundary conditions
to avoid the di�culties of general boundary conditions. We will use a r-regular
multiresolution analysis of the torus T[0;1]2 = (IR=ZZ)2 constructed using a clas-
sical periodization technique (Y. Meyer [12]). We take as granted that, with
minor modi�cations, the results proved on the whole line can be transposed to
the torus. In that section, homogeneous and inhomogeneous operators will be
treated similarly.

III.1 General formulation

The general formulation of the problem is

(P)

8>>>>>><
>>>>>>:

Find u 2 T[0;1]2 such that

Lu = f (38)

with f 2 T[0;1]2 and L a constant coe�cient elliptic operator of
order s.

Standard variational approximation (P.A. Raviart and J.M. Thomas [14])
leads us to look for the solution of a weak problem in so called Galerkin approx-
imation spaces V", where " is a scale related to V" with V" !

" !0
T[0;1]2 :

A natural choice for V" is V" = V P

j
x, where V P

j belongs to a multiresolution
analysis of T[0;1]2 of the type described above. Indeed, we then have the following
inequality guaranteed if the involved multiresolution analysis is r-regular,

8 s < r; 9 c > 0 8f 2 Hs jjf � �V P

j
f jj2 � C 2�js jjf jjHs (39)

where �VP

j
, j � 0, stands for the orthogonal projection on V P

j .

Then a standard Galerkin approximation writes

(P0)

8><
>:

Find up 2 V P

p � T[0;1]2 such that

�V P
p
Le�V P

p
up = �V P

p
f: (40)

where e�VP

j
, j � 0, stands for the extension operator from V P

j to T[0;1]2 .

This approach leads us to replace L by the approximation �V P
p
Le�V P

p
. The

corresponding numerical algorithms are reduced to linear system solvers once a
basis of V P

p has been chosen (P.A. Raviart et al. [14]).

xThe symbol :P stands for the periodization operator on [0; 1]2. We recall that dimV P

j
=

22j = 1=3 dimWj and that V P

0
= spanf�00 = 1g.
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Numerically, an optimal choice for the expansion basis is the wavelet basis
of V P

p : f�P

00;	
P

� ; � 2 �p�1
0 g{, since the corresponding sti�ness matrix, is sparse

and can be easily (i.e using diagonal matrices) uniformally preconditioned (S.
Ja�ard [8]).

III.2 A di�erent approximation

The main purpose of this paper is to de�ne a di�erent approximation of L and
the corresponding numerical algorithm. Taking the set of functions fe�P� ; � 2
�p�1
0 g (de�ned in (31)) and de�ning eUP

p = spanfL�1�P

00;
e�P� ; � 2 �pg, we get

an approximation of u as

up =
X
�2�p

0

2�jshf;	P

� ie�P� + hf;�P

00iL�1�P

00 : (41)

Indeed,
up = L�1�V P

p
f = PeUP

p

L�1f (42)

where PeUP
p

is the projection on eUP

p orthogonal to UP

p .

This formulation of up shows that the convergence of up towards u when

p!1 is straightforward since the set eUP

p is a family of Galerkin spaces for the
suitable space of de�nition of u.

Moreover, the stability of the algorithm is a direct consequence from the
classical preconditioning properties of wavelet base expansions (S. Ja�ard [8]).

III.3 General scheme

The numerical algorithm derived from the previous section is now presented
in its collocation version. We call Ij the set of points (ZZ

T
[0; 2j[)2. Then,

Jj = f2�jk; k 2 Ijg is the two dimensional regular grid of scale 2�j related to
[0; 1[2.

For the numerical implementation, we assume that the space V P

p is such that
any continuous function f 2 V P

p is unambiguously de�ned by its values on the set
of points Jp. This assumption (satis�ed by the even order spline multiresolution
we will use in the numerical tests) allows us to de�ne the collocation projection,
CVP

p
, from the set of real sequences (fk)k2Ip to V P

p as

8(fk)k2Ip ; CVP
p
((fk)k2Ip) = f , f 2 V P

p and f(2�pk) = fk; 8k 2 Ip:
As soon as we de�ne f 2 V P

p by its coordinates on the basis �P

pk, the opera-
tor CV P

p
appears as a discrete convolution operator involving a so-called inter-

polant �lter I�p
(�). The operator C�1

VP
p

is also a convolution operator called the

{Again, �n
m

= [m
j=n

�j with, in the periodized framework, �j = f� = 2�j
�
k + "

2

�
; k 2

ZZ
T
[0;2j[)2; " 2 E�g.
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point value operator and involves the point value �lter PV�p
(�) de�ned from

f�p0(Jp)g. Obviously, I�p
(�) and PV�p

(�) are inverse. Let us remark however,
that the point value operator always exists as soon as the functions �P

pk are
continuous.

For the implementation, we therefore replace �V P
p
by CV P

p
in (42) and de�ne

therefore up as
up = L�1CVP

p
f :

Given the point values of f on the grid points Jp , the algorithm provides the
values of up on the same grid. More precisely, the algorithm can be presented
as follows:

1. The input of the procedure is the set of values (f(Jp)) from which the
interpolant function fp 2 V P

p is constructed using I�p
(�):

fp =
X
k2Ip

cpk�
P

pk

2. fp is then decomposed into the wavelet subspaces WP

j ; 0 � j � p � 1 and
V P

0 as

f =
X

�2�
p�1

0

hf;	P

� i	P

� + c00

where c00 = �V P

0
(f).

3. up then becomes

up =
X

�2�p�1

0

2�jshf;  P

� ie�P� + c000

where e�P� =
�
2jsL�1 �

�
P

. Here, c000 = c00=�(0) for non-homogeneous
operators. For homogeneous operator c000 should be given. Note that in
that case �(0) = 0 and f should have at least s vanishing moments; the
fact that c000 should be given corresponds to the ill posed property of the
initial problem in L2.

4. up is then expanded in terms of the set of functions fe�Ppk; k 2 Ipg using
the tree algorithms related to e�P� and e�Ppk as

up =
X
k2Ip

cpke�Ppk :
5. Finally, the grid point values of up on Jp are estimated using the point

value �lter PVe�p(�).
17



It appears clearly that various precalculations should be performed. In the
�rst step, the interpolant �lter related to �pk must be known; for the second
step, the orthogonal multiresolution analysis quadrature mirror �ltersM" should
be used and, for the fourth step the corresponding biorthogonal multiresolution
quadrature mirror �lters fP" are required; �nally, the point value �lter related
to e�p is used for the last step.

To be more precise, we have to make some remarks that help to reduce the
complexity and storage. For steps one and two, tensorial properties can be used
in a very classical way to reduce the 2D-algorithms involved in 2(dim(V P

p ))1=2 �
1D-algorithms. It is then enough to know the one-dimensional interpolant �lter
related to 'Ppk and the one dimensional quadrature mirror �lters m� , � 2 E.

For steps four and �ve, where the �lters fP", and the point value �lter PVe�p are

involved, we can note apply this simpli�cation and we have a full 2D-problem.
We are now able to summarize all these precalculations in the following step

0:

0. The computation of the following �lters is performed (this is presented for
the spline multiresolution analysis case):

-Interpolant �lter related to 'pk, I'p : analytical formulas in one di-
mension are available in V. Perrier and C. Basdevant [15].

-Orthogonal 1D multiresolution analysis �lters m": analytical formu-
las are also available.

-FiltersfP" of the BiorthogonalMulti resolution Analysis: These �lters
are constructed from m" and formula (23) and (24). In fact only eP(0;1)

and eP(1;1) have to be computed since we have eP(1;0)(�1; �2) = eP(0;1)(�2; �1).

-Point value �lter, PVf�pk related to f�pk: This �lter is computed from

formula (28) and the analytical expression of S, � and �̂(�). We have
successively

e�Pp (x) = 1=(2�)
X
w2ZZ2

be�p(w)e2i�w:x ; x 2 IR2 ;

e�Pp (xn) = 1=(2�)
X
w2Ip

 X
r2ZZ2

be�p(w + 2pr)

!
e2i�w:xn ; xn 2 Jp : (43)

Practically, 43 is truncated according to a prescribed precision. This is
possible because ê�p(�) decreases fast.

Remarks:

� One should again emphasize that the entire algorithm is based on con-
volution operators. Thanks to the periodic boundary conditions, the
convolutions can either be performed directly or using a discrete Fourier
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transform. The implementation presented in this paper uses the Fourier
transforms since it is optimal for non compactly supported �lters on non
adapted spaces of approximation.

III.4 Detailed Algorithm

This section is devoted to the structure of the code. Basic tools, such as Fast
Fourier Transforms, Convolution/Decimation algorithms, or Term by term mul-
tiplications are not described.

As can be seen from the general scheme presented above, the main code
involves only two more elaborate routines that will be called the Precalculus
routine (step 0), and the tree algorithm routines. The tree algorithm routines
may or may not use the tensorial structure. They will be called consequently 2D
Tensorial Tree Algorithm-D (steps 2) and 2D Non Tensorial Tree Algorithm-I
(step 4) where -D and -I stand for direct and inverse. We recall that the steps
1 and 5 are convolutions and the renormalization performed in step 3 is term
by term multiplication.

The tree algorithm routines are becoming very classical and therefore we
will not describe them either. Note however, that since only convolutions are
performed in our algorithm, we only use the discrete Fourier transform of the
wavelet coe�cients (and not the corresponding values) at every scale, that re-
duces signi�cantly the complexity.

We now give the detailed description of the main program (ELLIP ) and of
the precalculus program (PRECAL) in pseudo code.

The following example sketches the structure our programs.

[OUTPUTS]=Program(INPUTS)

# Comments

# Body of Program:

{

[OUTPUTS1]= Subprogram1(INPUTS)

INPUTS2 = OUTPUTS1

[OUTPUTS] = Subprogram2(INPUTS2)

}

Our variable descriptors bears some resemblance to the C language as well
as to the MATLAB conventions.

III.4.1 Preliminary computations

The symbols 0, �, :�, and := used to present this program are borrowed from
MATLAB and mean respectively, the transposition, the matrix product, the
term by term product, and the term by term division. We also use the following
n sub sampling operator a : n : b de�ned as: If a is a 2D array of size 2p � 2p,
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b(1 : 2n : 2p; 1 : 2n : 2p) is a new array of size 2p�n � 2p�n given by a(i; j) =
a(2ni; 2Nj), (i; j) 2 Ip.

Program PRECAL

[QMFBIW,TAUTW] = PRECAL(p,pmax,QMFW,PHIW,SW,CW,SIGMA)

#INPUT:

#p -> index of the approximation space Vp in which the

# elliptic problem is solve.

#pmax -> index of the approximation space Vpmax in which the

# precomputation of TAUTILDE is done (it depends on the

# prescribed precision).

#QMFW -> structure containing the quadrature mirror filters in

# one dimension:

# QMFW.m0 -> 1D array containing the quadrature mirror filter

# coefficients associated to the scaling functions;

# size(QMFW.m0)->2^p; QMFW.m0(i) = m0(i/2^p),

# i belong to {0,...,2^p-1}.

# QMFW.m1 -> 1D array containing the quadrature mirror filter

# coefficients associeted to the wavelet;

# size(QMFW.m1)->2^p;

# QMFW.m1(i) = m1(i/2^p),i belong to {0,...,2^p-1}.

#PHIW -> 1D array; size(PHIW)->2^pmax; where pmax is given

# and pmax>p; PHIW(i) = the value of the Fourier transform

# of the 1D scaling function at the point i, i belong to

# {0,...,2^pmax-1}. Used to compute the value of tautilde on

# the finer grid.

#SW -> 2D array containing the sampling of the function

# S used for biorthogonal filters;

# Size(SW)->(2^pmax X 2^pmax); SW(i,j)=S(i/2^pmax,j/2^pmax),

# (i,j) belong to {0,...,2^pmax-1}^2.

#

#CW -> 2D array containing the sampling of the function

# S(2w)/(2^s S(w)) Size(CW) -> (2^p X 2^p); CW(i,j) =

# S(2i/2^p,2j/2^p)/ S(i/2^p,j/2^p),

# (i,j) belong to {0,...,2^p-1}^2.

#SIGMA -> 2D array containing the sampling of the symbol

# of the operator Size(SIGMA) -> (2^pmax X 2^pmax);

# SIGMA(i,j) = sigma(i/2^pmax,j/2^p),

# (i,j) belong to {0,...,2^pmax-1}^2.

#

#OUTPUT:

#QMFBIW -> structure containing the biorthogonal quadrature

# mirror filters related to the tautilde functions:

# QMFBIW.PTILDE0-> 2D tab containing the biorthogonal
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# quadrature mirror filters associated

# to the scaling functions;

# size(QMFBIW.PTILDE0)->(2^p X 2^p):

# QMFBIW.PTILDE1-> 2D tab containing the biorthogonal

# filters associated to the first wav-

# elet;size(QMFBIW.PTILDE1)-> (2^p X 2^p).

# QMFBIW.PTILDE2-> same as QMFW.PTILDE1 for the second

# wavelet (not computed QMFBIW.PTILDE2 =

# QMFW.PTILDE1 transposed).

# QMFBIW.PTILDE3-> same as QMFW.PTILDE1 for the third

# wavelet.

#

#

# Computation of the filters Ptilde

#

QMFBIW.PTILDE0 = ((QMFW.m0)' * (QMFW.m0)) .* CW;

QMFBIW.PTILDE1 = ((QMFW.m0)' * (QMFW.m1)) ./

(2^s SW(1:2^(p-pmax):2^pmax,1:2^(p-pmax):2^pmax);

QMFBIW.PTILDE3 = ((QMFW.m1)' * (QMFW.m1)) ./

(2^s SW(1:2^(p-pmax):2^pmax,1:2^(p-pmax):2^pmax);

#

# Computation of the point value filter related to TAUTILDE

#

TAUTW = ( (2^(ps) * PHIW' * PHIW) .* SS)./ SIGMA;

TAUTW = Periodize(TAUTW, p);

The subroutine Periodize is not described here, but it is a straight forward
transcription of 43.

III.4.2 Main Program

Main Program Ellip
[UX] = Ellip(FX,QMFW,FIW,QMFBIW,TAUTW)

#INPUT:

#FX -> 2D array containing the sampling of the function

# f; Size(FX) -> (2^p X 2^p); FX(i,j) = f(i/2^p,j/2^p),

# (i,j) belong to {0,...,2^p-1}^2.

#FIW -> 1D tab of data containing the interpolation filter

# related to PHI_p0, size(FIW)->2^p;

#QMFW -> see PRECAL

#QMFBIW -> see PRECAL

#TAUTW -> see PRECAL

#
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#

#OUTPUT:

#UX -> 2D array containing the sampling of the approxi-

# -mation u_p; size(UX)->(2^p X 2^p), UX(i,j) =

# u(i/2^p,j/2^p), (i,j) belong to {0,...,2^p-1}^2.

#

#TAUTW -> 2D array containing the values of the Fourier

# transform of the scaling function TAUTILDE at level p

#

#TEMPORARY DATA:

#FW -> 2D tab containing the fft of FX; Size(FW) ->

# (2^p X 2^p);

#CPW -> 2D tab containing the fft of scaling coefficient of

# FX; Size(CPW) -> (2^p X 2^p);

#DJW -> Structure of 2D array containing the Fourier transform

# of the wavelet coefficients; size(DJW) -> (2^p X 2^p);

#CTILDEPW

# -> same as CPW for UX;

#UW -> 2D tab containing the fft of UX;

#

{

#

# step 0

#

[FW] = Fast Fourier Transform(FX)

#

# step 1

#

[CPW] = FW.*FIW (Term by term multiplication)

#

# step 2

#

[DJW] = 2D Tensorial Tree Algorithm_D (CPW,QMFW)

#

# step 3

#

[DJW] = DJW.*(2^js) (Term by term multiplication)

#

# step 4

#

[CTILDEPW] = 2D Non Tensorial Tree Algorithm_I (DJW,QMFBI)

#

# step 5

#
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[UW] = CTILDEPW.*TAUTW (Term by term multiplication)

#

[UX] = Inverse Fast Fourier Transform(UW)

}

III.5 Storage and Complexity Analysis

As the computation is clearly separated into precalculations and actual imple-
mentation of the algorithm, we will also present the storage and complexity
analyses separating the two parts. One should remember that the precalcu-
lation is done once and for all while, as it will be the case in section IV, the
algorithm can be applied iteratively.

We will not discuss the complexity related to one-dimensional computations
as well as the storage connected to one-dimensional arrays since both can be ne-
glected in our bidimensional implementation. All the evaluations are performed
for N = dimVp = 2p � 2p.

Storage

Permanant storage (precalculations): The structures QMFBIW and TAUTW rep-
resent four bidimensional arrays of size N .

Temporary storage (actual algorithm): The storage related to bidimensional
arrays can be reduced to one arrays of size N .

Finally, the total memory used corresponds to �ve arrays of size N .

Complexity analysis

Precalculus: The computation of the four arrays in the structure QMFBIW is
done in C �N .

The computation of PVe�P
p0

is performed in C �N operations. The value of

C depends on the precision of the calculation.

Main program:

Fast Fourier Transform and Inverse Fast Fourier Transform in-
volve C � N log(N ) operations.

The complexity of the Term by term multiplication is N .

Tree algorithm-D and Tree algorithm-I are based on convolution and
decimation operators. These procedures involve therefore C � N opera-
tions.

Therefore the total complexity is O(N log(N )).

In the following section we use these programs iteratively,to solve the 2D
Burgers equation after reducing it to a cascade of elliptic problems. We would
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like to emphasize moreover, that our approach can be also used to solve equa-
tions involving homogeneous pseudo-di�erential operators. A characteristic ex-
ample is

p��u = f with periodic boundary conditions on [0; 1]2. We have
L =

p�� and therefore �(�) =
p
�21 + �22. The most natural choice for S is

S(�) = 2

q
sin2(�1=2) + sin2(�2=2) and one easily checks that the hypotheses of

theorem II.2 are then satis�ed. The algorithms presented previously can be
used (see Pj. Ponenti [16]).

IV Numerical Application: Resolution of the

2D Burgers equations

In this section, we will use the periodized Battle-Lemari�e's multiresolution anal-
ysis of splines of order m (see P.G. Lemari�e [9]). The existence of collocation
projectors related to the spline breakpoints requires splines of even order and
the value m = 8 will be used in the applications.

As described in J. Liandrat et al. [11], any parabolic equation of the type8>>>>>>>><
>>>>>>>>:

@u
@t

+ L0u+ G(u) = 0

u(0; t) = u(1; t)

u = u0 for t = 0

0 � t � Tmax; 0 � x � 1

(44)

where L0 is a di�erential operator of even order with positive symbol �0(!), and
G is generally a nonlinear function of u and its derivatives, can be numerically
approached using a classical �nite di�erence time discretization scheme followed
by a variational approximation of the resulting elliptic problems. We show now
that the approach developed in the previous sections can be used e�ciently to
provide this approximation.

Following J. Liandrat et al. [11] we �rst introduce a segmentation ftngMn=1

of [0; Tmax] (i.e. a sequence ftngMn=1 such that 0 = t0 < t1 < ::: < tM = Tmax)
and now look for a sequence of functions of the x variable fu(n)(x)gMn=1 such
that u(n)(x) is an approximation of u(x; tn).

With �tn = tn+1� tn; 0 � n < M , and considering �rst (44) as an ordinary
di�erential equation in time, a standard �nite-di�erence discretization leads to
the following iterative equation:

Lnu(n+1) = F (u(n); :::; u(n�i);�tn; ::::;�tn�i; G(u
(n)); :::; G(u(n�j))) (45)

where Ln is a step forward operator that together with F is determined by
the choice of the �nite-di�erence approximation of the time-dependent ordinary
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di�erential equation. We always assume that this approximation is at least semi
implicit for the linear part L0 and explicit for the nonlinear part. Therefore
9� > 0 such that Ln = (I + ��tnL0) where I stands for the identity operator.
By hypothesis, �0(!) � 0; 8! and then Ln has always a symbol bounded from
below by 1.

Hence, assuming that fu(n�l); l = 0; :::; ig and fG(u(n�l); l = 0; :::jg are
known, the resolution of (45) falls under the scope of paragraph III.3 and the
resolution of (44) can be therefore performed iteratively.

The bidimensional Burgers equation writes, with u = (u1; u2):8>>>>>><
>>>>>>:

@u
@t

+ru:u = ��u
u(0; t) = u(1; t)

u = u0 for t = 0

0 � t � Tmax; 0 � x � 1:

(46)

Choosing a constant step segmentation of [0; Tmax] (i.e., a segmentation
such that 9�t such that 80 � n � M; tn = n�t), an implicit Crank-Nicholson
time scheme (second order) for the linear term (��u), and an explicit second
order Adams-Bashforth scheme for the nonlinear term (ru:u) we get�
I � � �t

2
�

�
u(n+1) =

�
I + �

�t

2
�

�
u(n)� �t(3

2
ru(n):u(n)� 1

2
ru(n�1):u(n�1))

and the solution can be written as

u(n+1) = ~u(n+1) � u(n) ;
with

~u(n+1) =

�
I � � �t

2
�

��1�
2u(n) � �t(3

2
ru(n):u(n) � 1

2
ru(n�1):u(n�1))

�
(47)

To fall completely under the scope of paragraph III.3, one should be able
to evaluate the point values of the nonlinear term of (47). We used the sim-
plest method available that consists, as classically done in spectral methods
(C. Canuto et al. [3]), to \apply the nonlinear operator on the grid points".
More precisely, the approximation of ru(l):u(l) we used is PV (ru(l):u(l)) =
C�1
VP
p

(CVP
p
� (rul):CVP

p
(ul)) where � is a term by term multiplication of �nite

sequences and CVP
p

is the collocation projection introduced in section III.2.
Then, for each time step n�t, the problem clearly belongs to the class of

elliptic problems studied in section (III) with L = I � � �t2 � and f = 2u(n) �
�t(

3
2
ru(n):u(n) � 1

2
ru(n�1):u(n�1)). The iterative form of the equation induces

some modi�cations of the general scheme presented in III.3 and we therefore
provide the full scheme for an iteration of the Burgers approximation scheme:
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0. The inputs are the values of (u(n)(Jp)), (
@u(n)

@x1
(Jp)) and (@u

(n)

@x2
(Jp)).

1. F (n)(Jp) = 2u(n)(Jp) � �tPV (ru(n):u(n))(Jp) is computed as described
above.

2. Fn
p (x), the function of V P

p interpolating the values Fn(Jp) is constructed
as Fn

p =
P

k2Ip
cpk�

P

pk ;

3. Fn
p is then decomposed into the wavelet subspaces WP

j ; 0 � j � p� 1 and
V P

0 as

Fn
p =

X
�2�p�1

0

hFn
p ;	

P

�i	P

� + c00

where c00 = �V P

0
(Fn

p ).

4. u
(n+1)
p then becomes

u(n+1)
p =

X
�2�

p�1

0

2�jshFn
p ;  

P

� ie�P� + c00

where e�P� =
�
2jsL�1 �

�
P

.

5. u
(n+1)
p is then expanded in terms of the set of functions fe�Ppk; k 2 Ipg as

u(n+1)
p =

X
k2Ip

cpke�Ppk :
We also get @

@x
~u(n+1) =

P
k2Ip

cpk
@
@x
e�Ppk

and @
@y
~u(n+1) =

P
k2Ip

cpk
@
@y
e�Ppk.

6. From the point values of e�Pp (Jp), @
@x
e�Pp (Jp), and @

@y
e�Pp (Jp) we compute

(~u(n+1)(Jp)) and its gradient using the corresponding point value �lters.

7. Finally using the values of (un(Jp)) and of its gradient, we get the values
of (u(n+1)(Jp)) = (eu(n+1)(Jp)� u(n)(Jp)) and its gradient.

IV.1 Storage and Complexity Analysis

As described above, the numerical code implements the elliptic solver in an it-
erative process. Since the time step �t is constant, the characteristics of the
elliptic solver does not depend on the time index n. Then, the solver precalcu-
lations related to the whole parabolic problem are the same as the ones related
to the elementary elliptic solver (see section III.5). This applies to the storage
and to the complexity as well.
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As it has been shown in the previous section however, extra work, not con-
nected to the elliptic solver itself but to the computation of the right hand side
term of the iterative equation (47) is required. This extra work is related to the
storage of the �elds at the di�erent time steps involved in the three level time
step Adams-Bashforth Crank-Nicholson scheme and to the point value evalu-
ation of the derivatives involved in the nonlinear part. Again, it can be split
into permanent and temporary storage as well as in precalculation and main
program extra work.

Storage (in addition to the elliptic solver storage)

Permanant storage (precalculations): One extra structure containing the
point values @

@x
e�Pp (Jp) must be stored in one bidimensional array of size N ; the

structure containing the point values @
@y
e�Pp (Jp) is given by transposition of the

previous one.
Temporary storage (actual algorithm): The two �elds u(n), u(n�1) and u(n+1)

can be handled using three arrays of size N .

Complexity analysis (in addition to the elliptic solver complexity)

Precalculation: The computation of PV @
@x
e�Pp is performed in C � N opera-

tions where, as in section III.5 the value of C depends on the precision of the
calculation.

Main program: The addition of complexity is related to steps (1), (5), (6)
and (7). Since these steps involve convolutions and term by term products, the
added complexity is again CN logN

Finally, the total memory used is 7 arrays of size N .
The total complexity is O(N log(N )).
Obviously, the total complexity of the whole resolution isM times the com-

plexity of one time step resolution.

IV.2 Numerical Results

Test case on an x2 translation invariant problem

The validation of our code has been performed on an x2 translation invari-
ant problem constructed using for the initial condition (u01; u02)(x1; x2) =
(sin(2�x1); 0). Indeed, with such an initial condition, the solution remains x2
translation invariant.

For an easy comparison to the well documented paper of C. Basdevant et al.
[1] we used � = 10�2=�.

As explained in C. Basdevant et al. [1], the pertinent quantities are

ms = suptjj
@u

@x1
(x; t)jj1 = supt2[0;Tmax]j

@u

@x1
(0:5; t)j
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and tms de�ned such that

j @u
@x1

(0:5; tms)j = ms:

Table 48 exhibits the numerical results obtain using various values for the
time step �t. The maximum time step numerically acceptable was �t = 0:0075.
In each case, the values ofms are computed by interpolation and the correspond-
ing values of tms are deduced. The comparison with the expected theoretical
values (�rst column) shows that our method competes favorably with the ma-
jority of the schemes presented in C. Basdevant et al. [1]. A complete study of
the time step size dependence of the results connected to the stability analysis
of the parabolic algorithm will be published later.

Exact �t 0:0005 0:001 0:0025 0:005

�304:0103 ms �304:6308 �305:727 �309:4354 �316:5454
0:255237 tms 0:253 0:252 0:25 0:245

(48)

Test case on a �rst diagonal translation invariant problem

Our second test case is performed on a �rst diagonal translation invariant prob-
lem constructed using (u01 ; u02)(x1; x2) = (sin(2�(x1 + x2); sin(2�(x1 + x2)).
Again, the solution can be compared to the reference solution of C. Basdevant
et al. [1] thanks to a 45o rotation and to a time dilation of factor 2. However,
according to our reference axes, it is obviously a fully bidimensional solution.

Figures 1,2 and 3 show the isoline values of the numerical approximations
computed with �t = :001 at t = 0, t = 0:15 and t = 0:50. The �rst diagonal
translation invariance is kept and we obtain the valuesms = 249:0528 and tms =
0:123. The expected theoretical values are �304:0103 for ms and 0:1276185 for
tms. This is not as good as before but one should note that the resolution in
the direction perpendicular to the front axis is now half the one in our previous
calculations.

Since the ultimate application of all this work is the development of adaptive
algorithms (i.e. the development of algorithms handling approximation spaces
of reduced dimension adapted to the solution regularity (see for instance Pj.
Ponenti [16]),we have estimated, at various times, the wavelet basis adapted
to the approximation and de�ned as the lowest cardinal m = 8 spline wavelet
basis preserving the L2 norm of the approximation with a precision of 10�6.
The columns of table (49) show for each scale 0 � j � 7 the number of wavelets
selected in the adapted basis related to the approximated solution at various
times. It appears that, compared to the full basis of V8 (last column), these
bases have a drastically reduced cardinal (we de�ned the rate of compression
as cardinal of the adapted basis

cardinal ofV8
) even if the gradients of the solution �ll up a large

domain made of two complete lines of the plane (see �gures 1, 2 and 3)
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Figure 1: Initial condition, ti = 0.
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Figure 2: Approximated solution, ti = 0:15.
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Figure 3: Approximated solution, ti = 0:50.
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Conclusion

In this paper, we have proposed an inversion scheme for elliptic problems
based on biorthogonal wavelets. The approximation of elliptic problem solutions
is constructed and leads to stable and fast numerical algorithms.

Numerical tests related to the approximation of the parabolic Burgers equa-
tions transformed into a cascade of elliptic problems are provided.

The approximation scheme is based on convolution operators and can there-
fore be theoretically used in the framework of adapted spaces of approximation.
As mentioned however, the nice tensorial product structure that enforces nu-
merical e�ciency is fragile and is generally destroyed when applying the scheme
directly. Other approximations for the step forward operator, should allow
one to use e�ciently this approximation in a general context of adapted multi-
dimension spaces of approximation.
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